

Developmental Physiologically-Based Pharmacokinetic Modeling of Perfluorooctane Sulfonate in Rats and Mice

Leona H. Clark and Hugh A. Barton

I. Introduction

Perfluorooctane sulfonate (PFOS) is a member of a class of perfluorinated compounds (PFCs) used in (Renner, 2001):

- coatings for paper products
- (e.g. paper plates, microwave popcorn bags),
- oil- and water-repellent products for fabrics and carpets,
- * airplane hydraulic fluid,
- fire-fighting foams, and
- floor polishes.

Wildlife Exposure

PFOS has been detected in the liver and blood of wildlife in North America, Europe, Asia, and Antartica (Kannan et al., 2001).

Human Exposure

- ❖ PFOS was detected in the serum of 3M fluorochemical production workers during voluntary medical surveillances in 1995 and 1997 (Olsen et al, 1999).
- ❖ PFOS was also found in liver and blood samples from non-occupationally exposed human donors (Olsen, 2003).

Toxicity of PFOS in Rats

The critical effects of PFOS exposure in rats include (Seacat et al., 2002)

- hepatocellular hypertrophy and vacuolation,
- decreased serum cholesterol and triglycerides,
- ❖ increased liver-to-body-weight ratios,
- decreased body weight, anddeath.
- The **developmental effects** of maternal PFOS exposure in rats include reduced pup viability, growth, and survival (3M, 1999).

Environmental Concern

- ❖ The persistence and wide distribution of PFOS in the environment have caused a growing concern about its potential health risk on humans.
- ❖ In May 2000, 3M Corporation announced that they would stop manufacturing a group of perfluorinated compounds because of this concern. PFOS, one of the chemicals in the group, is a metabolite of the other chemicals.
- * Therefore, exposure to PFOS could occur directly from its manufacture or indirectly from the degradation of other perfluorinated chemicals.

Objective

- ❖ The purpose of this project is to develop and utilize a developmental physiologically-based pharmacokinetic (PBPK) model that will describe PFOS kinetics in adult male and female, pregnant, lactating, fetal, and neonatal rats (and potentially mice) following oral and intravenous exposure.
- ❖ The model will be used to estimate internal doses for these different life stages to help in evaluating dose-response observations.

II. Methods

A. Initial Model: Nonpregnant Rats and Mice

Pharmacokinetics of PFOS in Rats

- ♦ Well absorbed after oral administration
- Distributes primarily to the liver and the blood
 Poorly eliminated from the body; elimination half-life > 89 days
- ❖ Appears to undergo enterohepatic recirculation
- ❖No evidence of further metabolism

C. Parameters and Experimental Data

- •Organ- and species-specific parameters such as blood flow, cardiac output, ventilation rates and organ volumes will be obtained from the literature.
- •Chemical-specific parameters (e.g., partition coefficients and absorption rates) that are included in the model equations will be estimated using experimental data.
- •Available data sets include blood and tissue levels following iv, oral, and chronic feeding exposures in adult, nonpregnant and pregnant rats. ora

B. Extended Model: Pregnant, Lactating, Fetal, and Neonatal Rats and Mice

The adult model will be extended to simulate PFOS kinetics in pregnant, lactating, fetal, and neonatal rats and mice by adding

- 1. growing compartments for the fat, the uterus, the mammary tissue, and the placenta to simulate pregnancy.
- 2. a sub-model for the fetus/growing pup.

III. Results

- A review of the existing experimental data has been initiated.
- ❖ An initial formulation of the model structure (above) is being explored.

usions and Impact V. Future

This model can play a significant role in a developmental risk assessment of PFOS by providing a framework for dose-response analyses to be performed across the different life stages.

V. Future Directions

- ➤ The adult model (A) will be implemented and parameterized using AcslXtremeTM (Aegis Technologies Group, Inc., Huntsville, AL).
- Additional complexity in the model structure may be added if necessary (e.g., additional tissues or more complex descriptions of existing tissues).
- The adult model will be extended to (B) to simulate PFOS kinetics in pregnant, lactating, fetal, and neonatal rats and mice.
- ➤ Longer term goals include extending the model to simulate exposure to other perfluorinated chemicals.

References

Giesy JP and Kannan K (2001). Distribution of perfluorooctane sulfonate in wildlife. *Environ Sci Technol*. 35(7): 1339-42.

Olsen GW et al. (1999). Serum perfluorooctane sulfonate and hepatic and lipid clinical chemistry tests in fluorochemical production employees. *J Occup Environ Med.* 41(9): 799-806.

Olsen GW et al. (2003) Human donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals. *Environ Sci Technol*. 37(5): 888-91.

Renner R (2001). Growing concern over perfluorinated chemicals. *Environ Sci Technol.* 35(7): 154A-160A.

3M (1999). Combined Oral (Gavage) Final Report: Fertility, Developmental, Perinatal/Postnatal Reproduction Toxicity Study of PFOS in Rats. 3M. St. Paul, MN. June 10, 1999.

SOLVING AGENCY PROBLEMS